Time Frame: Sep-Dec	Unit Title: Ecosystem Interactions and Dynamics: Africa Storyline and Case Study	Course Name: Biology (CP and honors)			
Stage 1 - Desired Results					
Established Goals	Transfer				
expectations (HS-LS)	Students will be able to independently use their learning to				
LS1-2: Develop and use a model to illustrate the hierarchical organization of interacting systems	analyze food web relationships, energy transfer, genetic inheritance, evolution of traits, and conservation solutions for human activities in the Northwest Pacific ecosystem.				
functions within	Meaning				
LS1-5: Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy. LS1-6: Construct and revise an explanation based on evidence for how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements to	UNDERSTANDINGS Students will understand that Animals and plants interact within species and between species in many ways: to reproduce, to get energy, to grow and develop as organisms, and to survive. Animals and plants use the processes of cellular respiration and photosynthesis to get energy, as well as build and maintain the macromolecules (carbohydrates and proteins) they need to survive, and will participate in the global carbon cycle. Populations of animals and plants can also evolve in response to pressures such as environmental change, predation, or human activities.	ESSENTIAL QUESTIONS Why do some animals live in groups? How do animals and plants get the energy they need? How do species live together and change over time?			
other large carbon-based molecules.	environment.				
LS1-7: Use a model to illustrate that cellular	Acquisition				
respiration is a chemical	Students will know	Students will be skilled at			

process whereby the bonds of food molecules and oxygen molecules are broken dn the bonds in new compounds are formed resulting in a net transfer of energy. LS2-2: Use mathematical representations to	 possible circumstances why animals may live in groups or live individually to survive and reproduce how genetic traits are inherited through sexual reproduction, and how sexual reproduction introduces genetic variation roles of macromolecules for organisms to get energy and perform living functions 	 8 science & engineering practices (NGSS) Asking questions and defining problems Developing and using models Planning and carrying out investigations Analyzing and interpreting data Using mathematics and computational thinking Constructing explanations and designing
support and revise explanations based on evidence about factors affecting biodiversity and populations in	 essential elements (carbon, nitrogen) move in cycles through ecosystems, because matter is conserved, whereas energy flows in one direction human activities have changed the survival and evolution of animal species 	 solutions Engaging in argument from evidence Obtaining, evaluating, and communicating information
ecosystems of different scales.	 human activities and technologies can conserve species for the future 	Evaluate the role of individual and group behavior on individual chances to survive and reproduce.
LS2-4: Use mathematical representations to support claims for the cycling of matter and flow of energy among	 cultural and ecological reasons for preserving biodiversity animal and plant species interact and depend on each other within an ecosystem the different roles of producers and consumers 	Model how organisms on multiple trophic levels get food and energy in an ecosystem. Calculate the transfer of energy between trophic
organisms in an ecosystem.	and how they interact via photosynthesis and cellular respiration to get energy and to transfer	levels in an ecosystem.
LS2-5: Develop a model to illustrate the role of photosynthesis and cellular respiration in the	carbon molecules.	Demonstrate how carbon, hydrogen, and oxygen can be used to form different macromolecules (e.g. glucose, amino acids).
cycling of carbon among the biosphere, atmosphere, bydroephore, and		Explain with evidence the uses of different macromolecules for the functions of body systems in living organisms.
geosphere. LS2-7: Design, evaluate, and refine a solution for		Model how organisms get energy from digesting food.
reducing the impacts of human activities on the		Support an argument with evidence to distinguish cycling of matter (e.g. nitrogen) and flow of energy.

environment and	
biodiversity.	Use a model to illustrate how photosynthesis and
LS2-8: Evaluate the	cellular respiration transform energy through
evidence for the role of	chemical reactions with carbon molecules.
group behavior on	
individual and species'	Demonstrate how DNA is passed from parents to
chances to survive and	offspring and how sexual reproduction can introduce
reproduce	genetic variation.
LS3-1: Ask questions to	
clarify relationships	Analyze DNA and geographical data to explain the
about the role of DNA	distribution of organisms.
and chromosomes in	
coding the instructions	Use mathematical representations (graphs,
for characteristic traits	comparisons, numbers, etc.) to support and revise
passed from parents to	explanations of how biodiversity or a population of
offspring.	organisms varies or is changing.
LS3-3: Apply concepts of	
statistics and probability	Construct an explanation based on evidence that the
to explain the variation	process of evolution by natural selection results from
and distribution of	variation in a trait, inheritance of the trait, and
expressed traits in a	differential survival and/or reproduction because of
population.	the trait.
LS4-2: Construct an	
explanation based on	Explain with evidence how evolution by natural
evidence that the	selection leads to adaptation of populations and that
process of evolution	advantageous heritable traits (adaptations) will
primarily results from	increase in a population relative to an organism
four factors	without the trait.
LS4-3: Apply concepts of	
statistics and probability	Design, evaluate, and/or refine a solution for
to support explanations	mitigating (reducing the impacts of) human activities
that organisms with an	on the environment and biodiversity.
advantageous heritable	
trait tend to increase in	
proportion to organisms	
lacking this trait.	
l v	

LS4-4: Construct an explanation based on evidence for how natural selection leads to adaptation of populations. LS4-6: Create or revise a simulation to test a solution to mitigate adverse impacts of	
adverse impacts of human activity on biodiversity.	

2011 by Grant Wiggins and Jay McTighe