Pre-Calculus: Conics

Stage 1 Desired Results

ESTABLISHED GOALS:

Competencies:

- Students will demonstrate the ability to graph equations, functions, and figures by using tables and analyzing equations.
- Students will demonstrate the ability to model real world problems by building and analyzing the appropriate expression, equation, or function.
- Students will demonstrate the ability to analyze and summarize text and integrate knowledge to make meaning of discipline-specific materials.
- Students will demonstrate the ability to produce coherent and supported writing in order to communicate effectively for a range of discipline-specific tasks, purposes, and audiences.
- Students will demonstrate the ability to speak purposefully and effectively by strategically making decisions about content, language use, and discourse style.

Content Standards:

- HSG.C.A. 4 Construct a tangent line from a point outside a given circle to the circle.
- HSG.GPE.A. 1 Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.
- HSG.GPE.A. 2 Derive the equation of a parabola given a focus and directrix.
- HSG.GPE.A. 3 Derive the equations of ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances from the foci is constant.
- HSG.GMD.A. 2 Give an informal argument using Cavalieri's principle for the formulas for the volume of a sphere and other solid figures.
- MP2 Reason abstractly and quantitatively.
- MP4 Model with mathematics.
- MP5 Use appropriate tools strategically.
- MP7 Look for and make use of structure.
- MP8 Look for and express regularity in repeated reasoning.

Transfer

Students will be able to independently use their learning to apply their knowledge of conics to model and solve problems.

Meaning

ENDURING UNDERSTANDINGS

Students will understand that...

- a conic is the intersection of a plane and a doublenapped cone.
- a conic section can be classified based on its general equation.

Students will know...

- the parametric equation for an ellipse.
- the relationship between polar and rectangular coordinates.
- the distance formula for polar coordinates.
- the properties of polar equations for lines.
- the formula for the angle of inclination.
- the formula for the distance from a point to a line, both when the line is in slope-intercept and in standard form.
- the basic equations for the parabola.
- the standard form of the equation of an ellipse.
- the reflection property of an ellipse.
- the standard form of the equation of a hyperbola.
- the formulas for the lengths of the focal radii of an ellipse.
- the focus and focus-directrix properties of the hyperbola.
- the Focus-Directrix Property of Conics.
- the Polar Equations of the Conics.
- Cavalieri's Principle.
vocabulary: parametric equation, parameter, orientation, polar coordinates, polar axis, angle of inclination, parabola, directrix, focus, focal chord, focal

ESSENTIAL QUESTIONS

- How can we use conics as a tool to better understand the world around us?

Acquisition

Students will be skilled at...

- finding the coordinates of the corresponding point on the curve, given the parametric equation of a curve and a value for the parameter.
- graphing parametric equations.
- finding an x - y equation given parametric equations.
- changing from polar to rectangular coordinates.
- converting a polar equation to rectangular form and vice-versa.
- finding the distance between points in polar coordinates.
- finding the equation of a circle by completing the square.
- finding the equation of a circle by translation.
- determining the center and radius of a circle.
- graphing a circle and its radius.
- finding a polar equation for a circle.
- graphing a line through the pole.
- finding a polar equation for a tangent line to a circle.
- calculating the angle of inclination.
- finding the distance from a point to a line.
- determining the equation of a line tangent to a circle.
- finding the equation for a given parabola
width, paraboloid of revolution, focal length, focal ratio, ellipse, major axis, semimajor axis, minor axis, semiminor axis, eccentricity, tangent to an ellipse, focal radii, hyperbola, branches, focal axis, transverse axis, conjugate axis, focal radii, polar coordinates, rotation of axes
- analyzing the graph of a parabola to identify key characteristics.
- performing transformations to the graph a parabola.
- finding focal length and focal ratios.
- analyzing and graphing an ellipse.
- finding the equation for an ellipse.
- determining the tangent to an ellipse.
- sketching the asymptotes for a hyperbola.
- analyzing and graphing a hyperbola.
- computing the lengths of the focal radii of an ellipse
- finding lengths of focal radii of an ellipse.
- determining the foci, eccentricity, and directrices for ellipses and hyperbolas.
- determining the polar equation for a parabola.
- graphing ellipses, hyperbolas in polar coordinates .
- finding $x-y$ coordinates from $x^{\prime}-y^{\prime}$ coordinates.
- transforming and $x-y$ equation to $x^{\prime}-y^{\prime}$ - coordinates.
- create an informal argument using Cavalieri's Principle for the formulas for the volume of a sphere and other solid figures.

Century Skills

- reason effectively
- use systems thinking
- make judgments and decisions
- solve problems
- assess and evaluate information
- use and manage information
- access technology effectively

Stage 2 - Evidence	
Evaluative Criteria	Assessment Evidence
	PERFORMANCE TASK(S):
	OTHER EVIDENCE:

Stage 3 - Learning Plan

Summary of Key Learning Events and Instruction

Language Arts Integration	Mathematics Integration
• 1.0A.1 Use	•1.0A.1 Use
Technology Integration	
• 1.OA.1 Use	

