Pre-Calculus: Exponential \& Logarithmic Functions

Stage 1 Desired Results

ESTABLISHED GOALS:

Competencies:

- Students will demonstrate the ability to solve equations, inequalities, and systems by analyzing structure and applying the properties of equality and rational expressions.
- Students will demonstrate the ability to apply functions to solve problems by interpreting and analyzing multiple representations of functions.
- Students will demonstrate the ability to graph equations, functions, and figures by using tables and analyzing equations.
- Students will demonstrate the ability to model real world problems by building and analyzing the appropriate expression, equation, or function.
- Students will demonstrate the ability to analyze and summarize text and integrate knowledge to make meaning of disciplinespecific materials.
- Students will demonstrate the ability to produce coherent and supported writing in order to communicate effectively for a range of discipline-specific tasks, purposes, and audiences.
- Students will demonstrate the ability to speak purposefully and effectively by strategically making decisions about content, language use, and discourse style.

Content Standards:

- HSA.REI.D. 11 Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.
- IF.B. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.
- HSF.IF.C.7.E Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.
- HSF.IF.C.8.B Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as $y=(1.02)^{t}, y=(0.97)^{t}, y=$ $(1.01) 12^{t}, y=(1.2)^{t} / 10$, and classify them as representing

Transfer

Students will be able to independently use their learning to make informed decisions based on their understanding of exponential growth and decay.

Meaning

ENDURING UNDERSTANDINGS
Students will understand that...

- a constant percent increase or decrease at regular intervals always results in an exponential relationship
- an inverse function reverses the effect of the original function.

ESSENTIAL QUESTIONS

- How do different factors alter an outcome?

Acquisition

Students will know...

- that the domain of a function is the range of its inverse, and the range of a function is the domain of its inverse.
- that composing a function with its inverse results in x.
- that a graph and its inverse are symmetric about the line $\mathrm{y}=\mathrm{x}$.
- that a function has an inverse if and only if that function is one-to-one.
- that the horizontal line test can be used to determine if a function is one-to-one.
- the domain, range, and graph of $y=2^{x}$.
- the domain, range, and graph of $y=e^{x}$.
- that log function and exponential functions are inverses.
- the domain, range, and graph of $y=\log _{b} x$.
- properties of logarithms.
- that using the properties of logarithms to solve logarithmic equations may introduce extraneous solutions that do not check in the original

Students will be skilled at...

- adding composing functions and determining the resulting domain.
- computing iterates of a function.
- finding the inverse of a function.
- determining if two functions are inverses of each other.
- using symmetry to sketch the graph of an inverse function.
- simplifying expressions containing irrational exponents.
- solving equations with the unknown as an exponent
- sketching the graph of $y=a^{x}$
- sketching transformations of $y=a^{x}$.
- sketching the graph of $y=e^{x}$.
- sketching transformations of $y=e^{x}$.
- using both the logarithmic and exponential forms of equations.
- sketching transformations of $y=\log _{b} x$.
- sketching transformations of $y=\ln x$.
- solving equations and inequalities involving

exponential growth or decay.

- HSF.BF.A.1.C (+) Compose functions. For example, if $\mathrm{T}(\mathrm{y})$ is the temperature in the atmosphere as a function of height, and $h(t)$ is the height of a weather balloon as a function of time, then $T(h(t))$ is the temperature at the location of the weather balloon as a function of time.
- HSF.BF.B.4.B (+) Verify by composition that one function is the inverse of another
- .HSF.BF.B.4.C (+) Read values of an inverse function from a graph or a table, given that the function has an inverse.
- HSF.BF.B.4.D (+) Produce an invertible function from a noninvertible function by restricting the domain.
- HSF.BF.B. 5 (+) Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents.
- HSF.LE.A. 3 Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function
- HSF.LE.A. 4 For exponential models, express as a logarithm the solution to $a b_{c t}=d$ where a, c, and d are numbers and the base b is 2,10 , or e; evaluate the logarithm using technology.
- MP2 Reason abstractly and quantitatively
- MP4 Model with mathematics.
- MP7 Look for and make use of structure
- MP8 Look for and express regularity in repeated reasoning.

equation

- properties of inequalities involving exponential and logarithmic functions.
- logarithm function require positive inputs, and this may affect the solution set for a function involving log functions.
vocabulary: iterate, inverse function, one-to-one, exponential, asymptote, e, logarithmic, natural log
exponential, logarithmic, and natural logarithmic functions.
- simplifying and expanding expressions using log properties.
- converting between two bases

Content Area Literacy Standards

- RST.11-12.3 Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text.
- RST.11-12.4 Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 11-12 texts and topics.
- RST.11-12.5 Analyze how the text structures information or ideas into categories or hierarchies, demonstrating understanding of the information or ideas.
- RST.11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem.
- RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information.
- RST.11-12.9 Synthesize information from a range of sources (e.g., texts, experiments, simulations) into a coherent understanding of a process, phenomenon, or concept, resolving conflicting information when possible.

$21^{\text {st }}$ Century Skills

- reason effectively
- use systems thinking
- make judgments and decisions
- solve problems
- assess and evaluate information
- access technology effectively
- communicate clearly

Evaluative Criteria

Stage 2 - Evidence

	OTHER EVIDENCE:

Stage 3 - Learning Plan

Summary of Key Learning Events and Instruction

Language Arts Integration	Mathematics Integration
• 1.OA.1 Use	•1.0A.1 Use
Technology Integration	
• 1.OA.1 Use	

