Pre-Calculus: Polynomial \& Rational Functions

ESTABLISHED GOALS:

Competencies:

- Students will demonstrate the ability to simplify algebraic expressions by applying the properties of operations and arithmetic of complex numbers.
- Students will demonstrate the ability to solve equations, inequalities and systems by analyzing structure and applying the properties of equality, inequality, and rational expressions.
- Students will demonstrate the ability to apply functions to solve problems by interpreting and analyzing multiple representations of functions.
- Students will demonstrate the ability to graph equations, functions, and figures by using tables and analyzing equations.
- Students will demonstrate the ability to model real world problems by building and analyzing the appropriate expression, equation, or function.
- Students will demonstrate the ability to analyze and summarize text and integrate knowledge to make meaning of disciplinespecific materials.
- Students will demonstrate the ability to produce coherent and supported writing in order to communicate effectively for a range of discipline-specific tasks, purposes, and audiences.
- Students will demonstrate the ability to speak purposefully and effectively by strategically making decisions about content, language use, and discourse style.

Content Standards:

- HSN.CN.A. 1 Know there is a complex number i such that $i^{2}=-1$, and every complex number has the form $a+b i$ with a and b real.
- HSN.CN.A. 2 Use the relation $i^{2}=-1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.
- HSN.CN.A. 3 (+) Find the conjugate of a complex number; use conjugates to find moduli and quotients of complex numbers.
- HSN.CN.B. 4 (+) Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers), and explain why the rectangular and polar forms of a given complex number represent the same number.
- HSN.CN.B. 5 (+) Represent addition, subtraction, multiplication, and conjugation of complex numbers geometrically on the complex plane; use properties of this representation for computation.
- HSN.CN.B. 6 (+) Calculate the distance between numbers in the complex plane as the modulus of the difference, and the midpoint of a segment as the average of the numbers at its endpoints.

Stage 1 Desired Results

Transfer

Students will be able to independently use their learning to represent relationships between quantities, manipulate and analyze the representation, and interpret its meaning.

Meaning	
ENDURING UNDERSTANDINGS	ESSENTIAL QUESTIONS
Students will understand that...	
- equivalent expressions can be created by using	
multiple strategies and the guiding rules of mathematics.	How can the multiple representations of a function be used to best analyze the relationships between the two quantities it the graph and equation of a function communicate information that can be used to answer questions about real world problems.
it is possible to get closer and closer to something but to never be able to touch it.	

Acquisition

Students will know..

- the average rate of change of a function f on the interval $[a, b]$ is the slope of the line joining two points ($a, f(a))$ and ($b, f(b)$).
- that a graph of a function can be sketched by identifying the parent function and then analyzing and interpreting the changes made to $f(x)$, for example $-f(x)$ or $f(x+c)$.
- that given $f(x)=x^{n}$, when n is even, the graph of the function is symmetric with respect to the y axis, and when n is odd, it is symmetric with respect to the origin.
- that, if the multiplicity of a polynomial's zero is odd, the graph crosses the x-axis at that value. If it is even, then it touches, but does not cross, the x-axis at that value.
- that the graph of a polynomial function of degree 2 or greater is a continuous smooth

Students will be skilled at...

- calculating the instantaneous rate of change using the average rate of change.
- computing, interpreting, and comparing average rate of change for a function.
- simplifying difference quotients of the form $f(x)-f(a) \div x-a$.
- determining the domain and range of a function from both an equation and from a graph.
- graphing the parent function and transformations for linear, quadratic, square root, and absolute value functions.
- graphing transformations by viewing them as changes made to the parent function.
- setting up equations that define functions for problem-solving, including maximum and minimum value problems.
- HSN.CN.C. 8 (+) Extend polynomial identities to the complex numbers. For example, rewrite $x 2+4$ as $(x+2 i)(x-2 i)$.
- HSN.CN.C. 9 (+) Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.
- HSA.APR.A. 1 Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
- HSA.APR.B. 2 Know and apply the Remainder Theorem: For a polynomial $p(x)$ and a number a, the remainder on division by $\mathrm{x}-\mathrm{a}$ is $p(a)$, so $p(a)=0$ if and only if $(x-a)$ is a factor of $p(x)$.
- HSA.APR.B. 3 Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.
- HSA.APR.C. 4 Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity (x2 + $y 2)^{2}=(x 2-y 2)^{2}+(2 x y)^{2}$ can be used to generate Pythagorean triples.
- HSA.APR.C. 5 (+) Know and apply the Binomial Theorem for the expansion of $(x+y)^{n}$ in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal's Triangle. 1
- HSA.APR.D. 6 Rewrite simple rational expressions in different forms; write $a(x) / b(x)$ in the form $q(x)+r(x) / b(x)$, where $a(x), b(x), q(x)$, and $r(x)$ are polynomials with the degree of $r(x)$ less than the degree of $b(x)$, using inspection, long division, or, for the more complicated examples, a computer algebra system
- HSA.APR.D. 7 (+) Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction, multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions.
- HSA.REI.D. 11 Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.
- HSF.IF.B. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.
- HSF.IF.B. 6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.*
- HSF.IF.C. 7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.
- HSF.IF.C.7.C Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.
- HSF.IF.C.7.D (+) Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing
curve.
- leading Coefficient Test for polynomial functions.
- that, for a polynomial function of degree, n has at most, n real zeros.
- that the graph of a polynomial function of degree n has at most $n-1$ turning points.
- the relationships between roots and coefficients for polynomials equations of any degree.
- that complex zeros occur in conjugate pairs.
- Descartes's Rule of Sign.
- that, if the degree of the numerator is exactly one more than the degree of the denominator, then the graph of the function has a slant asymptote.
- that, within an interval of the number line created by the x-intercepts, the sign of the value of the function stays the same.
- the following algorithms and theorems:
o Division Algorithm
o Remainder Theorem
o Intermediate Value Theorem
o Factor Theorem
o Fundamental Theorem of Algebra
o Linear Factorization Theorem
o Rational Roots Theorem
o Upper and Lower Bound Theorem for
o Upper and Lower Bound Theorem for Real Roots.
vocabulary: rational function, key numbers, vertical/horizontal/slant asymptote, complex conjugate, double root, extraneous roots, persistence of sign, , synthetic division, even and odd functions
- sketching polynomial functions, using the leading coefficient test, the real zeros, and test intervals.
- using the Intermediate Value Theorem to approximate a real zero.
- sketching rational functions.
- using long and synthetic division to find quotients and remainders and to show that a value of x is a solution to the equation.
- factoring polynomials.
- finding solutions to polynomial equations using the Factor Theorem.
- simplifying rational expressions by factoring and by using long/synthetic division.
- adding, subtracting, and multiplying complex numbers.
- determining the quotient of complex numbers in standard form.
- writing complex numbers in standard form
- expressing polynomial equations in the form $a_{n}\left(x-r_{1}\right)\left(x-r_{2}\right) \ldots\left(x-r_{n}\right)$
- determining a polynomial equation with prescribed roots and their multiplicities.
- finding the rational roots of a polynomial equation.
- solving an equation using the rational roots theorem and the upper and lower bound theorem.
- solving an equation using the conjugate roots theorem.
- determining remaining roots when provided one root.
- using Descartes's Rule to verify the number of positive/negative roots.
- determining the vertical and horizontal asymptotes of a rational function.
- sketching the graph of rational functions.
- finding the equation of a slant asymptote.
- solving polynomial inequalities using factoring, key numbers, and the persistence of sign.

end behavior.

- MP1 Make sense of problems and persevere in solving them.
- MP2 Reason abstractly and quantitatively.
- MP4 Model with mathematics.
- MP5 Use appropriate tools strategically.
- MP7 Look for and make use of structure.
- MP8 Look for and express regularity in repeated reasoning.

Content Area Literacy Standards

- RST.11-12.3 Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text.
- RST.11-12.4 Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 11-12 texts and topics.
- RST.11-12.5 Analyze how the text structures information or ideas into categories or hierarchies, demonstrating understanding of the information or ideas.
- RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information.

Stage 2 - Evidence	
Evaluative Criteria	Assessment Evidence
	PERFORMANCE TASK(S):
	OTHER EVIDENCE:

Stage 3 - Learning Plan

Summary of Key Learning Events and Instruction

Language Arts Integration

- 1.OA. 1 Use

Mathematics Integration

- 1.0A. 1 Use

Technology Integration	District Materials
•1.0A.1 Use	

