UbD: Geometry - Probability

Time Frame: 11 Lessons	Unit 8: Conditional Probability	Course Name: Geometry
Stage 1: Desired Results		
Established Goal(s)	Transferable Skills	
Standards Addressed: HSS-CP.A. 1 Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and", "not"). HSS-CP.A. 2 Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.	Students will be able to independently use their learning to... - understand and evaluate random processes underlying statistical experiments - make inferences and justify conclusions from sample surveys, experiments and observational studies - understand independence and conditional probability and use them to interpret data - use the rules of probability to compute probabilities of compound events in a uniform probability mode - calculate expected values and use them to solve problems - use probability to evaluate outcomes of decisions - apply mathematical knowledge, skill, and reasoning to solve real-world problems. - develop clear and effective communication. - increase self-direction. - develop creative and practical problem-solving. - become responsible and involved citizens. - develop informed and integrative thinking.	
conditional probability of A given B as	Meaning	
$P(A$ and $B) / P(B)$, and interpret the independence of A and B as saying that the conditional probability of A given B is the same as the probability of A , and the conditional probability of B given A is the same as the probability of B. HSS-CP.A. 4 Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities.	Understandings Students will understand that... - math is a continuum, Algebra is needed for Geometry, and math concepts will build on themselves as we develop our mathematical understandings. - chance experiments can not be solved absolutely. We can only look at the likelihood or probability that an event will occur given a certain sample space. - knowledge of probability will allow students to be educated consumers of information in an uncertain world. - there is independence and conditional probability and use them to interpret data. - they can use the rules of probability to compute probabilities of compound events in a uniform probability model.	Essential Questions - How can I use my knowledge of probability to make informed decisions about uncertain events? - How can I collect and organize data to come to make reasonable predictions about real-life phenomena?

UbD: Geometry - Probability

HSS-CP.A. 5 Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer
HSS-CP.B. 6 Find the conditional probability of A given B as the fraction of B's outcomes that also belong to A , and interpret the answer in terms of the model.
HSS-CP.B. 7 Apply the Addition Rule, $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$, and interpret the answer in terms of the model.
HSS-ID.B. 5 Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.

- they can calculate expected values and use them to solve problems.

Acquisition

Students will know...

- it is possible to find or estimate probability using a model or data from a chance experiment.
- attributes of a chance experiment and how to identify one.
- how to find the sample space for chance experiments.
- how to model situations using probability.
- how to use sample space to calculate probability.
- how to create organized lists, tables, and tree diagrams and use them to calculate probabilities.
- how to use information in a two-way table to find relative frequencies and estimate probability.
- how to use tables and Venn diagrams to represent sample spaces and to find probabilities.
- how to use the addition rule to find probabilities.
- how to estimate probabilities, including conditional probabilities, from two-way tables.
- how to use probabilities and conditional probabilities to decide if events are independent.
- how to define and correctly use the glossary terms: chance experiment, event, outcome, probability, sample space, addition rule, dependent events, independent events, and conditional probability.
- the addition rule can be used to find probabilities.
- that tables and Venn diagrams can be used to represent sample spaces and find probabilities.
- how to find the sample space for chance experiments.

Students will be able to...

- estimate probability using a model or data from a chance experiment.
- identify chance experiments.
- model situations using probability. I can use sample space to calculate probability.
- create organized lists, tables, and tree diagrams and use them to calculate probabilities.
- use information in a two-way table to find relative frequencies and estimate probability.
- estimate probabilities, including conditional probabilities, from two-way tables.
- estimate probabilities, including conditional probabilities, from two-way tables.
- define and use geometry-specific vocabulary words that were introduced in this unit.
Mathematical Practices:
- make sense of problems and persevere in solving them.
- reason abstractly and quantitatively.
- construct viable arguments and critique the reasoning of others.
- model with mathematics.
- use appropriate tools strategically.
- attend to precision.
- look for and make use of structure.
- look for and express regularity in repeated reasoning.

