UbD: Geometry - Congruence

SSS) follow from the definition of congruence in terms of rigid motions. HSG-CO.C. 9 Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.
HSG-CO.C. 10 Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
HSG-CO.C. 11 Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.
HSG-MG.A. 3 Apply geometric methods to solve design problems HSN-Q.A. 3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.

Acquisition

Students will know...

- how to identify corresponding parts from a congruence statement.
- how to use rigid transformations to figure out if figures are congruent.
- how to write a congruence statement.
- how to use rigid transformations to explain why figures are congruent.
- how to explain why if all the corresponding sides and angles are congruent then the triangles are congruent.
- how to write conjectures about what I need to know to prove two triangles are congruent.
- I can write a proof that segments of the same length are congruent.
- why the Side-Angle-Side Triangle Congruence Theorem works.
- how to use Side-Angle-Side Triangle Congruence Theorem in a proof.
- why the Angle-Side-Angle Triangle Congruence Theorem works.
- how to use Angle-Side-Angle Triangle Congruence Theorem in a proof.
- how to critique an explanation of the perpendicular bisector theorem.
- how to demonstrate or explain why the Perpendicular Bisector Theorem is true.
- know how to explain the SSS Triangle Congruence theorem works.
- how to use the SSS Triangle Congruence Theorem in a proof.
- how to use SAS, ASA, AAS, SSS SSS Triangle Congruence Theorems in a proof.
- how to write conjectures about quadrilaterals.
- that the Side-Side-Angle theorem does not guarantee congruency and be able to explain why.
- how to critique a proof about quadrilaterals.
- how to prove theorems about quadrilaterals.
- how to rewrite conjectures so it is specific enough to prove.
- how to prove theorems about the diagonals in parallelograms.
- how to critique a proof about constructions.
- how to explain why constructions work.
- how to use rigid transformations to prove quadrilaterals are congruent.
- how to write conjectures about quadrilateral congruence.
- how to define and correctly use the glossary terms: corresponding, auxiliary line, parallelogram, converse, rectangle and rhombus.

Students will be able to...

- identify congruent parts of triangles.
- explain why congruent parts of congruent triangles are congruent.
- explain how SAS, ASA, AAS, SSS can be used to show congruent triangles.
- develop precise language when explaining or proving theorems or concepts.
- prove the Perpendicular Bisector Thoerem.
- use triangle congruency theorems in proofs.
- use triangle congruency theorems in developing proof about quadrilaterals.
- use triangle congruency theorems in developing proof about parallelograms.
- use constructions and write proofs about triangles and quadrilaterals.
- use rigid transformations to demonstrate congruency.
- understand and define specific vocabulary that help develop concepts and understandings.
- define and use geometry-specific vocabulary words that were introduced in this unit.

Mathematical Practices:

- make sense of problems and persevere in solving them.
- reason abstractly and quantitatively.
- construct viable arguments and critique the reasoning of others.
- model with mathematics.
- use appropriate tools strategically.
- attend to precision.
- look for and make use of structure.
- look for and express regularity in repeated reasoning.

