UbD: Geometry - Constructions and Rigid Transformations

UbD: Geometry - Constructions and Rigid Transformations

alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.
HSG-CO.C.10: Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180 degrees; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
HSG-CO.D.12: Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.
HSG-CO.D.13: Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.
HSG-MG.A.3: Apply geometric methods to solve design problems
HSN-Q.A.2: Define appropriate quantities for the purpose of descriptive modeling. HSN-Q.A.3: Choose a level of accuracy appropriate to limitations on measurement when reporting quantities

Students will know.

- that compasses create circles and can be used to transfer distances across a construction.
- how to create diagrams using a straightedge to produce a line or segment through two points.
- how to create a construction from instructions (in written language).
- how to describe (in writing) construction steps precisely.
- that a perpendicular bisector is the set of points equidistant from two given points.
- how to construct a perpendicular bisector.
- how to construct an equilateral triangle.
- how to use circles in a construction to reason (using words and other representations) about lengths in figures.
- how to construct a line that's perpendicular to a given line through a given point on the line.
- how to construct an angle bisector.
- how to construct a square.
- how to describe (orally and in writing) the diagonals of a square and use these conjectures to construct a square inscribed in a circle.
- how to coordinate (orally) technology tools with paper and pencil tools to construct a diagram.
- how to use technology to construct a diagram.
- how to choose geometric methods to solve design problems.
- how to construct perpendicular bisectors and explain (in writing) how they are used to solve problems.
- that rigid transformations produce congruent figures by preserving distance and angles.
- how to draw the result of a transformation (in written language) of a given figure.
- how to explain (orally and in writing) a sequence of transformations to take a given figure onto another.
- that the term "reflection" (in written and spoken language) requires specifying a line of reflection.
- how to determine whether a figure is a reflection of another.
- how to draw reflections of figures.

Students will be able to...

- create shapes precisely.
- use compass and straightedge constructions to make patterns.
- explore equal distances.
- identify what shapes are possible within the construction of a regular hexagon.
- use tools to solve some construction challenges.
- construct a line parallel to a given line that goes through a point not on the given line.
- construct a line perpendicular to a given line that goes through a point not on the given line.
- use straightedge and compass moves to construct squares.
- use technology to help them construct specific diagrams.
- use perpendicular bisectors.
- draw some transformations.
- reflect some figures.
- translate some figures.
- draw some transformations.
- rotate shapes precisely.
- describe some symmetries of shapes.
- describe more symmetries of shapes.
- compare transformed figures.
- figure out some transformations.
- make convincing explanations.
- prove statements about parallel lines.
- prove the Triangle Angle Sum Theorem.
- construct some creative shapes.
- define and use geometry-specific vocabulary words that were introduced in this unit.
Mathematical Practices:

UbD: Geometry - Constructions and Rigid Transformations

	- that the term "translation" (in written and spoken language) requires specifying a directed line segment. - whether a figure is a translation of another. - how to draw translations of figures. - that rigid transformations produce congruent figures by preserving distance and angles. - how to draw the result of a transformation (in written language) of a given figure. - how to explain (orally and in writing) a sequence of transformations to take a given figure onto another. - that the term "rotation" (in written and spoken language) requires several descriptors including angle, center, and direction. Determine whether a figure is a rotation of another. Draw rotations of figures - how to describe (orally and in writing) the reflections that take a figure onto itself. - how to describe (orally and in writing) the rotations that take a figure onto itself. - how to compare and contrast (orally) diagrams of transformations. - that the notation represents the image of point. - how to explain (orally and in writing) a sequence of transformations that take given points to another set of points. - how to draw the result of a transformation (in written language) of a given figure. - how to explain (orally and in writing) a sequence of transformations to take a given figure onto another - how to label diagrams and explain conjectures (orally and in writing). - how to prove (in writing) that vertical angles are congruent. - how to prove (in writing) that when a transversal crosses parallel lines, alternate interior angles are congruent. - how to prove that when a transversal crosses parallel lines, corresponding angles are congruent. - how to prove (in writing) that the sum of the measures of the angles in a triangle is 180 degrees. - how to create a new geometric pattern using construction techniques. - how to create a pattern from instructions (in written language). - describe (in writing) how to recreate a pattern.	- make sense of problems and persevere in solving them. - reason abstractly and quantitatively. - construct viable arguments and critique the reasoning of others. - model with mathematics. - use appropriate tools strategically. - attend to precision. - look for and make use of structure. - look for and express regularity in repeated reasoning.

UbD: Geometry - Constructions and Rigid Transformations

| - how to define and correctly use the glossary terms: circle, line segment, |
| :--- | :--- | :--- | :--- |
| parallel, conjecture, perpendicular bisector, inscribed, angle bisector, |
| regular polygon, tesselation, assertion, congruent, image, rigid |
| transformation, theorem, reflection, directed line segment, translation, |
| rotation, line of symmetry, reflection symmetry, symmetry, and rotation |
| symmetry. |$|$

