UbD Algebra 2 - Statistical Inferences

Time Frame: 16 Lessons	Unit 7: Statistical Inferences	Course Name: Algebra 2
Stage 1: Desired Results		
Established Goal(s)	Transferable Skills	
Standards Addressed: HSG-GPE.B. 7 Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. HSS-IC.A. 1 Understand statistics as a process for making inferences about	Students will be able to independently use their learning to... - apply statistical inferences, mathematical knowledge, skill, and reasoning to solve real-world problems. - apply statistics to make predictions based on data from prior events. - develop clear and effective communication. - increase self-direction. - develop creative and practical problem-solving. - become responsible and involved citizens. - develop informed and integrative thinking.	
population parameters based on a random sample from that	Meaning	
population. HSS-IC.A. 2 Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. For example, a model says a spinning coin falls heads up with probability 0.5 . Would a result of 5 tails in a row cause you to question the model? HSS-IC.B. 3 Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each. HSS-IC.B. 4 Use data from a sample survey to estimate a population mean or proportion; develop a margin of	Understandings Students will understand that... - (in spoken and written language) what it means to be random in the context of statistics. - (orally and in writing) what it means to select at random. - they can apply statistics as a process for making inferences about population parameters based on data from a statistical study. - probabilities from simulations may differ from expected probabilities. - they can use data to critique (orally and in writing) mathematical claims based on a model in different cases. - they can use data from a random sample to determine an estimate for a population proportion.	Essential Questions - How can we use advanced algebraic techniques to model and solve real-world problems? - How do we use algebraic concepts to model and solve problems related to data analysis and statistics, including regression analysis and hypothesis testing? - How has algebra developed over time, and how has it contributed to our understanding of mathematics and the natural world?

UbD Algebra 2 - Statistical Inferences

error through the use of simulation models for random sampling.

HSS-IC.B. 5

Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.

HSS-IC.B. 6

Evaluate reports based on data.

HSS-ID.A. 1

Represent data with plots on the real number line (dot plots, histograms, and box plots).

HSS-ID.A. 2

Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.

HSS-ID.A. 4

Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.

- they an generalize that a greater sample size usually leads to a smaller margin of error.

Acquisition	
Students will know...	Students

Students will be able to...

- how to describe the different purposes for each type of study design (survey, observational study, or experimental study)..
- that the way I choose a sample matters, and that random samples have less bias.
- how to calculate a relative frequency and create a relative frequency histogram.
- that a normal curve is defined using the mean and standard deviation.
- how to calculate a proportion of a set of data that matches a shaded area in a histogram.
- how to use the mean and standard deviation of a normally distributed data set to estimate intervals when given a proportion.
- how to use the mean and standard deviation of a normally distributed data set to estimate proportions.
- how to estimate the margin of error using the mean and standard deviation.
- how to estimate the margin of error using standard deviation.
- that a larger margin of error means more variability, and one should be less confident in their estimate of the population mean.
- that a smaller margin of error means more variability, and I can be more confident in my estimate of the population mean.
- decide if a study is good or bad based on evidence.
- understand that different samples from the same population can still have different statistics.
- recognize the difference between a survey, observational study, or experimental study.
- understand why randomization is important in the design of a study.
- understand that sample means and proportions can be representative of the overall population.
- understand that sample means and proportions vary.
- understand why it's important to be skeptical of data that seems unfair.
- use mathematical evidence to find the difference between when outcomes are unfair or due to random chance.
- justify a mathematical claim using evidence
- recognize the patterns of proportions that occur in distributions that are approximately normal in shape.
- use the standard deviation to describe the variability in a distribution.
- describe a distribution using the characteristics of its shape, center, and spread.
- understand that my choice of the design for a study will impact what questions I can answer.
- recognize the difference between a survey, observational study, or experimental study

Mathematical Practices:

- make sense of problems and persevere in solving them.
- reason abstractly and quantitatively.

UbD Algebra 2 - Statistical Inferences

		- construct viable arguments and critique the reasoning of others. - model with mathematics. - use appropriate tools strategically. - attend to precision. - look for and make use of structure. - look for and express regularity in repeated reasoning.

