UbD Algebra 2 - Exponential Functions and Equations

Time Frame: 18 Lessons	Unit 4: Exponential Functions and Equations	Course Name: Algebra 2
Stage 1: Desired Results		
Established Goal(s)	Transferable Skills	
Standards Addressed: HSA-REI.D. 11 Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find	Students will be able to independently use their learning to... - apply exponential functions and equations, mathematical knowledge, skill, and reasoning to solve real-world problems. - develop clear and effective communication. - increase self-direction. - develop creative and practical problem-solving. - develop informed and integrative thinking.	
	Meaning	
value, exponential, and logarithmic functions. HSA-SSE.A. 1 Interpret expressions that represent a quantity in terms of its context. HSA-SSE.A.1.a Interpret parts of an expression, such as terms, factors, and coefficients. HSA-SSE.A.1.b Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $\mathrm{P}(1+r)^{\circ} n$ as the product of P and a factor not depending on P . HSA-SSE.B. 3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. HSA-SSE.B.3.c Use the properties of exponents to transform expressions for exponential functions. . HSF-BF.A.1.a Determine an explicit expression, a recursive process, or steps for calculation from a context.	Understandings Students will understand that... - properties of exponents can be used to estimate or find the value of a function when the input is a rational number. - logarithms are a way to express the exponent that makes an exponential equation true. - that the constant e is irrational, its value is approximately 2.7 , and it is used in many exponential functions that model real-life situations with a continuous growth rate. - they can express the solution to exponential equations in base e using the natural logarithm. - logarithmic functions can be used to answer questions about real-life situations such as population growth, acidity of substances, and intensity of earthquakes.	Essential Questions - What are the properties and applications of functions, including exponential and logarithmic functions? - How has algebra developed over time, and how has it contributed to our understanding of mathematics and the natural world? - How can we use advanced algebraic techniques to model and solve real-world problems?

UbD Algebra 2 - Exponential Functions and Equations

HSF-IF.A. 2

Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.

HSF-IF.B. 4

For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.

HSF-IF.C

Analyze functions using different representations.

HSF-IF.C. 7

Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.

HSF-IF.C.7.e

Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric
functions, showing period, midline, and amplitude.

HSF-IF.C.8.b

Use the properties of exponents to interpret expressions for exponential functions.

HSF-LE.A

Construct and compare linear, quadratic, and exponential models and solve problems.

HSF-LE.A.1.a

Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.

HSF-LE.A.1.b

Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.
HSF-LE.A.1.c

Acquisition

Students will know...

- how to calculate values that are changing exponentially.
- that exponential functions change by equal factors over equal intervals.
- how to calculate a growth or decay factor of an exponential function for different input intervals.
- how to explain why an exponential function changes by the same factor over equal intervals, even when those intervals are not whole numbers.
- how to write equations for exponential functions from two input-output pairs, even when the input pairs are not one unit apart.
- how to use the half-life of elements to calculate how much of the element remains over time.
- how to approximate the value of unknown exponents
- that a logarithm is a way to represent an exponent in an exponential equation.
- how to use known values of logarithms to estimate the value of other logarithms.
- that e is an irrational constant, like pi, that has a value of about 2.718
- how to calculate where two exponential graphs meet using logarithms.
- how to interpret the intersection of the graphs of two exponential functions in context.
- how to interpret logarithmic functions in context.

Students will be able to...

- determine the value of exponential functions at non-whole number inputs.
- how to evaluate a logarithmic expression.
- use technology to determine the value of a logarithm.
- understand that is used in exponential models when we assume the growth rate is applied at every moment.
- solve simple exponential equations using logarithms.
- solve exponential equations using logs or by graphing
- understand how logarithms are used to measure things like acidity and the intensity of earthquakes.

Mathematical Practices:

- make sense of problems and persevere in solving them.
- reason abstractly and quantitatively.
- construct viable arguments and critique the reasoning of others.
- model with mathematics.
- use appropriate tools strategically.
- attend to precision.
- look for and make use of structure.
- look for and express regularity in repeated reasoning.

UbD Algebra 2 - Exponential Functions and Equations

| Recognize situations in which a quantity grows or | |
| :--- | :--- | :--- |
| decays by a constant percent rate per unit interval | |
| relative to another. | |
| HSF-LE.A.2 | |
| Construct linear and exponential functions, including | |
| arithmetic and geometric sequences, given a graph, a | |
| description of a relationship, or two input-output pairs | |
| (include reading these from a table). | |
| HSF-LE.A.4 | |
| For exponential models, express as a logarithm the | |
| solution to ab^(ct)=d where a, c, and d are numbers | |
| and the base b is 2, 10, or e; evaluate the logarithm | |
| using technology. | |
| HSF-LE.B.5 | |
| Interpret the parameters in a linear or exponential | |
| function in terms of a context. | |
| HSN-RN.A.1 | |
| Explain how the definition of the meaning of rational | |
| exponents follows from extending the properties of | |
| integer exponents to those values, allowing for a | |
| notation for radicals in terms of rational exponents. | |

