UbD: Algebra 1 - Introduction to Quadratic Functions

Time Frame: 17 Lessons	Unit 6: Introduction to Quadratic Functions	Course Name: Algebra 1
Stage 1: Desired Results		
Established Goal(s)	Transferable Skills	
Competencies Addressed: Introduction to Quadratic Functions Standards: HSA-SSE.A. 1 Interpret expressions that represent a quantity in terms of its context. HSA-SSE.A. 2 Use the structure of an expression to identify ways to rewrite it..	Students will be able to independently use their learning to. - look at patterns which grow quadratically and cont - examine other quadratic relationships via tables, gratir special features of quadratic functions and the situ - develop clear and effective communication. - increase self-direction. - develop creative and practical problem-solving. - develop informed and integrative thinking.	ast them with linear and exponential growth. aphs, and equations, gaining appreciation for some of the ations they represent.
HSA-SSE.B. 3 Choose and produce an	Meaning	
equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. HSF-BF.A. 1 Write a function that describes a relationship between two quantities. HSF-BF.A.1.a Determine an explicit expression, a recursive process, or steps for calculation from a context. HSF-BF.B. 3 Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x)$, $f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and	Understandings Students will understand that... - not all change is linear. - expressing some relationships of change will require a quadratic function. - quadratic relationships are evident in real life phenomena. - quadratic expressions come in a variety of forms and the different forms lend themselves to different forms of the same solutions. - they can identify features of graphs of quadratic functions.	- How can I develop previous algebra skills so I can be successful in solving quadratic equations? - How are quadratic functions used to model, analyze and interpret mathematical relationships? - Why is it advantageous to know a variety of ways to solve and graph quadratic functions?

UbD: Algebra 1 - Introduction to Quadratic Functions

algebraic expressions for them.
HSF-IF.A. 2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
HSF-IF.B. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship.
HSF-IF.B. 5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.
HSF-IF.C. 7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.
HSF-IF.C.7.a Graph linear and quadratic functions and show intercepts, maxima, and minima.
HSF-IF.C. 8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
HSF-IF.C. 9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal

Acquisition

Students will know...

- how to create drawings, tables, and graphs that represent the area of a garden.
- choose a domain that makes sense in a revenue situation.
- model revenue with quadratic functions and graphs.
- relate the vertex of a graph and the zeros of a function to a revenue situation.
- rewrite quadratic expressions in different forms by using an area diagram or the distributive property.
- rewrite quadratic expressions given in factored form in standard form using either the distributive property or a diagram.
- the difference between "factored form" and "standard form."
- explain the meaning of the intercepts on a graph of a quadratic function in terms of the situation it represents.
- how the numbers in the factored form of a quadratic expression relate to the intercepts of its graph.
- graph a quadratic function given in factored form.
- how to find the vertex and -intercept of the graph of a quadratic function in factored form without graphing it first.
- explain how a and the c in $y=a x^{2}+b x+c$ affect the graph of the equation.
- understand how graphs, tables, and equations that represent the same quadratic function are related.
- explain how the b in $y=a x^{2}+b x+c$ affects the graph of the equation.
- match equations given in standard and

Students will be able to...

- recognize a situation represented by a graph that increases then decreases.
- describe how a pattern is growing.
- tell whether a pattern is growing linearly, exponentially, or quadratically.
- an expression with a squared term is called quadratic.
- recognize quadratic functions written in different ways.
- use information from a pattern of shapes to write a quadratic function.
- that, in a pattern of shapes, the step number is the input and the number of squares is the output.
- explain using graphs, tables, or calculations that exponential functions eventually grow faster than quadratic functions.
- explain the meaning of the terms in a quadratic expression that represents the height of a falling object.
- use tables, graphs and equations to represent the height of a falling object.
- create quadratic functions and graphs that represent a situation.
- relate the vertex of a graph and the zeros of a function to a situation.
- that the domain of a function can depend on the situation it represents.
Mathematical Practices:
- make sense of problems and persevere in solving them.
- reason abstractly and quantitatively.
- construct viable arguments and critique the reasoning of others.

UbD: Algebra 1 - Introduction to Quadratic Functions

```
descriptions).
HSF-LE.A. }2\mathrm{ Construct linear and
exponential functions, including
arithmetic and geometric sequences,
given a graph, a description of a
relationship, or two input-output pairs
(include reading these from a table).
HSF-LE.A. }3\mathrm{ Observe using graphs and
tables that a quantity increasing
exponentially eventually exceeds a
quantity increasing linearly, quadratically,
or (more generally) as a polynomial
function.
```

- explain how a quadratic equation and its graph relate to a situation.
- recognize the "vertex form" of a quadratic equation.
- relate the numbers in the vertex form of a quadratic equation to its graph.
- graph a quadratic function given in vertex form, showing a maximum or minimum and the -intercept.
- how to find a maximum or a minimum of a quadratic function given in vertex form without first graphing it.
- describe how changing a number in the vertex form of a quadratic function affects its graph.
- model with mathematics.
- use appropriate tools strategically.
- attend to precision.
- look for and make use of structure.
- look for and express regularity in repeated reasoning.

